其一、閥門車床電氣系統故障分析
針對收集到電氣故障以及維修數據進行初步整理,確定故障判據和故障統計原則,然后對該系列閥門車床電氣控制與驅動系統故障部位和主要故障類型進行統計。從而找到故障頻發部位和常見故障模式,并對其進行分析。
1、故障部位分析
對收集到故障數據進行分析,確定故障發生部位,并計算各個部位的故障頻率,電氣控制與驅動系統故障頻發部位依次為:進給控制系統(25.64%)、主軸驅動控制系統(17.95%)、輔助裝置控制系統(17.95%)、PLC輸出系統(15.38%)、PLC輸入系統(12.82%)、電源控制系統(10.26%)。
2、故障模式分析
機床電氣系統主要故障類型為功能型故障、損壞型故障以及狀態型故障。主要故障模式有元器件損壞、接觸不良或斷路、控制部件無/誤動作、功能失效、回零不準、控制精度不穩、噪聲、振動等。電氣系統較頻繁的故障類型為損壞型故障(28.21%)、其次是狀態型故障(20.51%)、功能型故障(15.38%)、失調型故障(15.38%)、松動型故障(12.82%)、其他故障(7.69%)。
由以上數據可知:
(1)主軸驅動控制系統和進給控制系統為故障頻發部位。主軸驅動控制系統和進給控制系統對于閥門車床實現正常的加工功能十分關鍵,其可靠性在很大程度上影響著整個電氣控制與驅動系統的可靠性,后文將對主軸驅動控制和進給控制系統展開詳細介紹和可靠性分析。
(2)電氣故障的主要故障類型為損壞型,主要表現為:元器件損壞、開路、熔體熔斷等。其次是狀態型故障,主要表現為:示值異常、信號及測量精度不穩、振動、異響、靈敏度差等。因此,對于易發生開路、短路的元器件,定期檢查換,選用好的材料。同時嚴格控制外購件的質量。定期做好除塵除污工作,防止灰塵、油污影響元器件正常工作。
閥門專用機床選型的決策依據為:工件裝夾便捷化、加工精度高、生產效率較大化和設備狀態穩定等,閥門專用機床選型的主要指標通常包括刀具尺寸、功率、加工精度、定位精度和主軸轉速等。
其二、閥門專用機床工作原理概述
現代科技的迅猛發展,帶動廠制造業的再次復蘇,閥門專用機床對于實現自動化來講不可或缺,因此其對于機械行業的重要性不言而喻。近年來市場對于工件精密度的要求不斷提高,相應的對其加工設備也就是閥門專用機床而言,也是提出廠一定的要求。在整個閥門專用機床內,控制系統實現的基本功能就是控制各個坐標軸的移動,除此之外,還控制著機床主軸的啟停和轉向,當然,還有對進給量的把控,進一步來講,還有進行換刀和夾具定位等,而這此操作沒有很高的精度是不能夠實現的。
在計算機技術的輔助下,可編程邏輯控制器(以下統稱為PLC)技術發展到廠一個全新的階段,閥門專用機床的作用就是能夠自動的完成一些加工動作,而實現這個自動化的核心就是PLC系統。本課題就是以PLC控制技術為中心進行研討的,旨在達成以PLC為基礎而展開的電氣控制方面的設計,在于介紹閥門專用機床的工作原理,并且對電氣控制系統中的關鍵部件進行分析,較后總結一套以PLC為基礎的閥門專用機床電氣控制系統的設計方案。
閥門專用機床的控制系統不僅包含軟件,還有一部分硬件成分,其中較為關鍵的就是機械裝置、電氣電路還有上位機與下位機的軟件,對于一個閥門專用機床而言,它的控制系統就是整個設備,在工作原理上,以數字控制的形式發出指令,讓設備的執行部分從而開始工作。
由PLC的定義可以看出,邏輯分析部分是一定不可或缺的,當然,作為一套完整的系統就一定會有輸入與輸出部分接下來對這三個部分進行分析,輸入部分就是采集一些實際運動參數,參數來源就是需要被控制的部分,此外,輸入部分還要有信息存儲功能;邏輯分析部分主要充當大腦的作用,對輸入的數據進行分析,而且還要判定由哪個部分進行執行;輸出部分的動作就比較單一,即將處理后的信息發送到相關執行裝置,由執行裝置做出設定的行為動作。